Distributed calibration of probe microscope scanner in nanometer range

Rostislav V. Lapshin, email: rlapshin@yahoo.com Institute of Physical Problems named after F. V. Lukin, Zelenograd

Chernogolovka, 2011

Main features

- Calibration in nanometer and subnanometer ranges
- Each point of scanner movement space is characterized by its own set of calibration coefficients
- Negative influence of thermal drift and creep is excluded during calibration process
- Using of natural standards crystalline lattice constants as length measures
- Complete automation of measurements

Applied methods

- Feature-oriented scanning (FOS)
- Feature-oriented positioning (FOP)
- Counter-scanned images (CSIs)

Partition of scanner movement space

Algorithm flowchart of distributed calibration

Areas where distributed calibrations were carried out

Examples of distributed calibration with (a) small step 8 positions (~2.44 Å), (b) large step 361 positions (~110 Å)

Searched for regression surfaces drawn through local calibration coefficients (a) K_x , (b) K_y , and (c) local nonorthogonality α

Static distortions of probe microscope piezoscanner in lateral plane

Application fields

- Accurate calibration of probe microscope scanner in nanometer and subnanometer ranges
- Automatic characterization of lattice crystal parameters and surface defects
- Analysis and certification of SPM operation – measurements of thermal drifts, creeps, nonlinearities, and spurious couplings